Elektrika.cz, portál o silnoproudé elektrotechnice, elektroinstalace, vyhlášky, schémata zapojení.

LAPP: Nová metoda ...

Výplň mezi žilami běžných PUR kabel znesnadňuje odstranění pláště. Proto ...

SCHRACK: Katalog ...

Nejen tlustými vodiči je elektrotechnik živ. Musíme si už jednou ...
 
Oddíly
reklama
Bleskovky
19.01.2017 TIP na podpěrné izolátory PROFIX PA. PROFIX PA jsou určeny především k montáži a pevnému uchycení přípojnicových systémů, sběrnic, svorkovnic, kabelových vývodů, živých částí přístrojů a jiných elektrotechnických zařízení. Tělo podpěrného izolátoru PROFIX PA je vyrobeno z vysoce odolného plastu na bázi polyamidů vyztužených ...
18.01.2017 Spočítejte si náklady na provoz rozhlasové ústředny kalkulačkou DEXON. Možná se sami sebe ptáte, proč pořídit moderní zesilovač nebo rozhlasovou ústřednu ve třídě AB, D, T nebo H, a nezůstat u starého a osvědčeného zařízení. Nebo dokonce, proč nekoupit něco z bazaru nebo od levné firmy. Ve prospěch kvalitního ...
17.01.2017 Digitální redakční knihovna již indexuje přes 200 tisíc stránek informací souvisejících s instalační elektrotechnikou. Redakční digitální knihovna elektrotechnických informačních zdrojů nemá v Česku obdobu! I přes to, že se v České republice shromažďuje mnoho dat, tolik zdrojů z elektrotechnického oboru ve formě fulltextového prohledávání a ...
17.01.2017 TIP na elektrickou vrtačku s příklepem 600 W POWC1020. V životě aktivního montéra není vrtaček nikdy dost. Buď se zničí, ztratí nebo se zapomene, komu se půjčila. Proto se neustále díváme po různých alternativách. Např. Napětí 230-240V/50Hz, příkon 600W, otáčky na prázdno 0-3.100 min-1, příklep 48.000 strks/min, rychloupínací sklíčidlo 13mm, hmotnost ...
13.01.2017 TIP na software od společnosti ELMER. Jedná se o programy, které výrazně urychlují práci projektanta, konstruktéra nebo revizního technika. Software je vyvíjen a zdokonalován již od roku 1994. Za posledních 14let software začala používat řada uživatelů, konkrétně pak SchémataCAD, EL-REVIZE a EL-Testy. Software používají ...
12.01.2017 Pamatujete na klasické domovní zvonky? Stále se prodávají. Společnost KLEIN BLAŽEK vyrábí stále klasický zvonek s miskou. Zvonek je určen pro signalizaci v domácnosti a podmínkou je montáž na nehořlavý podklad. Pro napájení se používá zvonkový tranformátorek o střídavém napětí 8V a výkonu 8VA. Zvonek ovšem není ...
Vybrané zdarma funkce
Které tři funkce nových videopořadů chcete zdarma?
Celý záznam
Sestřih záznamu
Stopáž záznamu
Audioverze záznamu
Textový přepis záznamu
Souvislosti záznamu
Diskutovat k záznamu
Výsledky budou zveřejněny později

[ Výsledky | Hlasování ]
Hlasů : 435
Bazar
Nabídka, prodám ....
Nabídka, prodám ....
Nabídka, prodám ....
Nabídka, prodám ....
Nabídka, prodám ....
Nabídka, prodám ....
Osobní nástroje
FUTURE okénko - V nejbližších dnech se zde dočtete ...
  • Drátěné kabelové žlaby MERKUR 2 oslavily již pět let na trhu. Na veletrh AMPER 2016 přijela společnost ARKYS s novým žlabem v zesíleném provedení M2-R, které poskytuje nárůst nosnosti o přibližně 20 procent ve srovnání se standardním provedením žlabu ...
  • Vysokoškolsky vzdělaných elektrotechniků je u nás nedostatek. Co je příčinou a kdo za to nese odpovědnost? Na to jsme se zeptali profesora Jiřího Pavelky z pražské FEL ČVUT. Co si myslí o současné úrovni elektrotechnického vzdělávání? Co podle něj na ...

Řízení napětí předřadným odporem nebo děličem napětí


Document Actions
Článek
Ke snížení napětí na hodnotu vhodnou pro měření se použije předřadného odporu s posuvným jezdcem. Předřadné odpory se také nazývají regulační odpory. Zhotovují se z vodičů, které mají velký měrný odpor a malý tepelný součinitel odporu, tedy jejich odpor se málo mění se změnou teploty.
Autorský článek, ze dne: 2.02.2016
reklama

Mějte prosím na paměti, že tento text je z roku 1969! Tehdejší přístroje nebyly tak bezpečné jako dnes. V každém případě si vezměte ponaučení z historie!

Předřadný odpor
Ke snížení napětí na hodnotu vhodnou pro měření se použije předřadného odporu s posuvným jezdcem (obrázek 1). Předřadné odpory se také nazývají odpory regulační. Zhotovují se z vodičů, které mají velký měrný odpor a malý tepelný součinitel odporu, tj. jejich odpor se málo mění se změnou teploty.

Obrázek 1. Válcový regulační odpor s posuvným jezdcem

Obrázek 2. Značení svorek u válcového regulačního odporu s posuvným jezdcem


Obrázek 3. Zapojení regulačního odporu při měření


Obrázek 4. Upevnění regulačního odporu v měřicím stole


Na štítku odporu, který se upevňuje na jeho kostře, jsou uvedeny jmenovité hodnoty, které jsou stanoveny pro případ, kdy teplota dosáhne 250°C při trvalém zatížení po dobu 30 minut. To znamená, že se regulační odpor při značném zahřátí nepoškodí.

Na posuvném odporu jsou tři svorky; svorky 1 a 2 jsou umístěny na konci odporu, svorka jezdce má číslo 3, nebo je označena písmenem J (obrázek 2). Před zapnutím proudu do měřeného obvodu se zařadí jezdcem největší odpor. Tím se chrání jak odpor, tak i měřicí přístroje před poškoze­ním vniknutím většího proudu do měřeného obvodu. Konce odporu v místě a—b propojíme, aby se při odskočení jezdce nebo při jeho nedolehnutí ne­ přerušil proudový obvod (obrázek 3).

Posuvných odporů se používá také v měřicích stolech, kde bývají upev­něny ve svislé poloze. Umístí se tak, aby celý odpor byl zařazen v poloze, při níž je jezdec dole (obrázek 4).

Větší hodnoty předřadného odporu se dosáhne zapojením dvou nebo několika odporových válců do série.

Změnou polohy jezdce se mění na svorkách měřeného spotřebiče velikost napětí i proudu.

Příklad: Průběh proudu a napětí na svorkách spotřebiče, který má činný odpor Rs=20Ω, bude-li k němu zapojen do série regulační odpor R od 0 do 100Ω, a při napětí zdroje 100V bude:
Pro R=0, tj. při krajní poloze regulačního odporu, bude napětí na svorkách spotřebiče U=100V, při proudu


Při posunutí jezdce na hodnotu R=20Ω bude obvodem protékat proud


Na spotřebiči bude napětí U=I.Rs=2,5.20=50V.

Při posunutí jezdce na hodnotu R=40Ω bude obvodem protékat proud


Na spotřebiči bude napětí U=I.Rs=1,66.20=33,2V.
Obdobně bude pro
R = 60Ω   I= 1,25A  U=25V
R = 80Ω   I=1A   U=20V
R = 100Ω   I=0,83A   U=16,6V

Na obrázku 5 je graficky vyznačen průběh napětí na svorkách spotřebiče a na svorkách regulačního odporu a průběh proudu v měřeném obvodu. Regulačním odporem nemůžeme napětí na měřeném předmětu snížit až na nulu. Nižšího napětí se dosáhne, bude-li mít regulační odpor větší činnou hodnotu.

Při napětí na spotřebiči 20V bude úbytek na regulačním odporu 80V. Při tomto úbytku a proudu 1A bude v regulačním odporu ztráta (spotřeba) P=U.I=80.1=80W, která se přemění v teplo. Na měřeném spotře­biči bude ztráta P=Us.I=20 . 1=20W. Z toho také vyplývá, že při velkém snižování napětí vzniká velký ztrátový výkon v regulačním odporu
a že účinnost regulace tímto způsobem je malá. Zlepšení účinnosti se do­sáhne použitím zdroje, který nemá příliš rozdílné napětí od napětí, které se potřebuje při měření. Napětí zdroje by mělo být vyšší než napětí potřebné při měření jen asi o 30 procent.

Obrázek 5. Průběh napětí a proudu při zapojení regulačního odporu do série se spotře­bičem


Obrázek 6. Sériové zapojení regulačních odporů pro jemnou regulaci


Jemné regulace se dosáhne zapojením dvou odporových válců do série (obrázek 6). Jeden válec je určen pro hrubou a druhý pro jemnou regulaci. Válec pro jemnou regulaci je třeba volit pro jmenovitý proud dvakrát až pětkrát větší, než je jmenovitá hodnota prvního válce. Tomu je třeba rozumět tak, že při stejné délce válce musí být pro větší jmenovitý proud větší průřez odporového vodiče a odpor celého válce bude menší. Např. při jmenovitém proudu 1A lze na délku válce 50cm navinout odpor 50Ω. Při posunu jezdce o 1 centimetr bude změna odporu 1Ω. Bude-li odpor na celé délce např. jen 10Ω, bude průřez vodičů větší a odpor se dá zatížit větším jmenovitým proudem. Regulace bude pětkrát jemnější než při jmenovitém proudu 1A. Nejde tedy při použití válce s dvakrát až pětkrát větším jmeno­vitým proudem o proudovou velikost, ale o to, že na stejné délce válce je menší odpor.

Příklad: U zařízení, které má činný odpor 50Ω, je třeba snižovat napětí od 220V, tj. napětí zdroje, až na 160V. Při napětí 220V budou regulační odpory vyřazeny a obvodem bude procházet proud I=220/50=4,4A.

Proud 4,4A, přibližně 5A, bude také jmenovitou hodnotou odporu pro hrubou regulaci. Při napětí na svorkách spotřebiče 160V bude spotřebičem procházet proud I=160/50=3,2A. Při napětí na spotřebiči 160V bude na odporu pro hrubou regulaci napětí 220—160=80V a tomu při proudu 3,2A odpovídá velikost hrubého regulačního odporu R=80/3,2=25Ω.

Velikost odporu pro jemnou regulaci zvolíme asi 1/5 až 1/10 hodnoty odporu pro hrubou regulaci a pro jmenovitý proud dva až pětkrát větší.

Odporový dělič
Odporový dělič, nazývaný také potenciometr, je běžným posuvným (regulačním) odporem zapojeným tak, že se koncové svorky 1 a 2 připojí na zdroj proudu. Ze svorky 1 a ze svorky jezdce se vyvedou dva vodiče, které jsou v podstatě novým zdrojem s potřebným napětím pro měřený obvod (obrázek 7). Pro jemnou regulaci použijeme dvou válcových odporů s jezdci, zapojených do série. Měřený obvod se vyvede ze svorek jezdců (obrázek 8). Druhý odpor bude pro jemnou regulaci. Jeho odpor se volí asi 1/5 odporu pro hrubou regulaci a pro jmenovitý proud asi dvakrát až pětkrát větší.

Příklad: Voltmetrickou metodou máme změřit činný odpor spotřebiče o velikosti asi 130Ω.

Předpokladem pro měření je to, aby měřený činný odpor spotřebiče nebyl značně menší, než je odpor voltmetru, neboť po zapojení malého odporu za velký odpor voltmetru je zmenšení výchylky ručky malé a čtení malého rozdílu je vždy méně přesné. Vhodné je, jestliže se odpor voltmetru přibližně rovná měřenému odporu. Použijeme-li k měření Avomet, je nejbližší odpor 300Ω a jemu odpovídá napěťový rozsah 300mV=0,3V. K měření se použije jednoho článku akumulátorové baterie. Napětí 300mV se získá děličem napětí. Zapojení Avometu, děliče napětí a měřeného spotřebiče je vyznačeno na obrázku 9.

Pro plnou výchylku milivoltmetru je třeba proud I=U/Rv= 0,001A.

Obrázek 7. Odporový dělič


Obrázek 8. Odporový dělič s jemnou regulací

Proud, který bude procházet děličem, musí být o něco větší. Volí se tak, aby zbytečně nezatěžoval zdroj proudu. Připustíme-li proud děliče 0,01A, potřebujeme odpor o velikosti R=napětí zdroje/proud děličem=2,2/0,01=220Ω.

Obrázek 9. Měření činného odporu Avometem při použití děliče napětí


Při proudu 0,05A stačí odpor děliče 44Ω, regulace však je hrubší.

Před zapnutím proudu se posune jezdec na děliči až ke svorce 1, tj. jezdec a svorka 1 budou spojeny nakrátko. Kdyby byl jezdec na druhé straně, bylo by na milivoltmetru plné napětí zdroje proudu, a tím by se milivoltmetr spálil. Po zapnutí proudu se nastaví jezdcem plná výchylka milivoltmetru. Potom se přepne přepí­nač do polohy 2 a přečte se buď napětí, nebo počet dílků, např. 200mV=0,2V. Z naměřených hodnot se vypočte mě­řený odpor.



Uděláme-li si před měřením rozbor k měření a máme-li vhodný voltmetr, lze v některém případě měřit i bez děliče napětí. Budeme-li mít voltmetr s malým vnitřním odporem, např. 200 Ω/V a měřicí rozsah do 2,4V, ne­potřebujeme pro měření odporu asi 150Ω odporový dělič. Při prvním měření zjistíme napětí článku baterie U1. Při druhém měření, po připojení měře­ného odporu do série s voltmetrem, naměříme napětí U2. Velikost měře­ného odporu pak vypočítáme z rovnice



Autor: Jan Mikeš

Článek je ukázkou historické knihy Elektrická měření pro montéry.
 
 
 

 

 
 

Diskutující k tomuto článku

   (počet diskutujících: 2)
TEXT Z OBLASTÍ SOUVISEJÍCÍ KONTAKT


FIREMNÍ TIPY
Nová kapesní příručka pro elektrikáře 2016 je na trhu. Co tato publikace obsahuje? Čím je zajímavá? Jaké provedení oceňuji? Na lesklém křídovém papíře na vás dýchne barevný obsah koncernu Hager. Na ten jsme si bohužel museli oba nasadit brýle, protože byť fullHD rozlišení, ale v kapesním provedení A6 potřebuje pro nás starší lidi lupu. Naleznete aktuální přehled sortimentu, ale také praktické informace o navrhování ochran proti přepětí, něco o problematice instalací v koupelnách ...
Archivuji starou literaturu ... Pokud naleznete ve své knihovně starou elektrotechnickou literaturu, pak pro ni nehledejte bezpečnější úkryt! Knihy, starší časopisy, normy, příručky, slovníky, učebnice, tabulky jednoduše nabídněte!
Už se vám stalo, že někdo odmítl instalaci proudového chrániče se slovy: „To nepotřebuji, to budu používat jenom já"? Poslechněte si tento příběh Pavla Horského, ve kterém zemřel mladý člověk pouze proto, že jiní podcenili možné nebezpečí.
Jak spojovat armovací železa rychle a spolehlivě? Existuje několik doposud používaných metod. Pojďme si je shrnout a porovnat je s novým DEHN clipem. Můžeme použít vázací drát, lze to svařit, nasvorkovat, sešroubovat se šroubem s trhací hlavou, nebo to jednoduše zacvaknout! Podívejte se i na malou videoukázku a vyberte si z tabulky vhodné provedení. Co na to říkáte?
DALŠÍ FIREMNÍ ODKAZY
Nejen o katalogu plném svítidel! Podívejte se za roušku známé značky, abyste objevili osobnost známé kapely! Jinak se zde dozvíte o aktuálním katalogu osvětlovacích těles, které patří do hlavního spotřebitelského proudu. Tak je i tento katalog koncipován. Jednoduše, stručně, přehledně. Sledujte více zde ...
Videospot názorně ukazuje použití můstkových systémů pro propojení řadových svorek. K použití není potřeba speciálních nástrojů, přes to je připravena praktická pomůcka. Řešení, které umožňuje přehledné spojení sousedících i vzdálenějších svorek včetně rozdílných průřezů ...
Spojovací prvky elektroinstalací jsou nedílnou částí každého projektu. OBO Bettermann má ve své nabídce položky, které jsou velmi oblíbené pro svou snadnou použitelnost, dostupnost v lokálních velkoobchodech a také díky dobré propagaci ...
Bečovské svorky asi netřeba představovat. Víte ale, jak se taková svorka vyrábí? Na proces výroby svorky ve zkratce se můžete podívat ve videospotu, také se dozvíte, jaké jsou v Bečově změny a co vše firma chystá k letošnímu 65. jubileu. Více informací zde ...
Terminolog
Týdenní přehled
Přihlašte si pravidelné zasílání týdenního přehledu
Vyhledávání
Hledaný text zadávejte prosím s diakritikou



Panacek
Autor článku
reklama
Tiráž

Neomezený náklad pro česky a slovensky hovořící elektrotechnickou inteligenci.

ISSN 1212-9933