Elektrika.cz, reportážní portál instalační elektrotechniky, vyhlášky, schémata zapojení .

 
Oddíly
reklama
Bleskovky
Osobní nástroje
FUTURE okénko - V nejbližších dnech se zde dočtete ...
  • Poselství laickým provozovatelům elektroinstalací! Elektrické zásuvky mohou vypadat bezproblémově, ale jejich oprava má svá pravidla. V českém právním systému platí zákon č. 250/2021 Sb., který vymezuje pravidla pro práci s technickými zařízeními ...
  • Koho kdy samotného napadlo jaké preventivní opatření by elektromontéři a elektroúdržbáři měli provádět, aby předešli úrazům při používání ručního nářadí? Asi nikdy a nikoho, tedy vyjma bezpečáka. Ten naopak přesně ví, jaké příčiny nejčastěji vedou k ...

ABB: Přenos informací v KNX/EIB


Document Actions
ABB: Přenos informací v KNX/EIB
... délka sběrnice v linii, požadavky na napájecí zdroje. Nejmenší možná systémová instalace KNX/EIB. Dvoubarevná dioda LED na tlačítkovém snímači může být nastavena jako signální (jednou barvou svítí v zapnutém stavu ovládaného spotřebiče, druhou ...
Josef Kunc, ze dne: 15.08.2007
reklama

Přenos informací
V předchozím čísle jsme naznačili, že přenos dat probíhá formou digitalizovaných telegramů. Veškerý přenos informací vychází z decentralizovaného principu, u něhož není potřebná žádná řídicí jednotka. Každý účastník na sběrnici je vybaven sběrnicovou spojkou, jejímž úkolem je být neustále na příjmu a být připraven vysílat. Znamená to tedy připravenost podle aktuální potřeby přijímat a vysílat telegramy, týkající se činnosti aplikačního modulu s ní spojeného. V paměti sběrnicové spojky je uložen aplikační program tohoto aplikačního modulu. Po sběrnici současně probíhá komunikace a jsou také napájeny všechny sběrnicové spojky. Spotřeba jedné sběrnicové spojky smí být nejvýše 150mW, pokud je z ní napájen aplikační modul s diodami LED, spotřeba může vzrůst až na 200mW.


Klik pro větší náhled.

Obr. 1: Vstupní obvody sběrnicové spojky

Vraťme se však k přenosu dat. Pro názornost znovu uveďme zobrazení logických stavů na sběrnici, namodulovaných na napájecím napětí (obr. 2).


Klik pro větší náhled.

Obr. 2: Logická „1“ a „0“ namodulovaná na stejnosměrném napájecím napětí

Při příjmu signálu se na sekundárním vinutí transformátoru v přenosovém modulu sběrnicové spojky sečtou signály z obou primárních vinutí, takže na řídicí obvody sběrnicové spojky jsou přiváděny příslušné pulsy binárního telegramu. Vyskytne-li se na sběrnici poruchový signál (např. elektromagnetickou indukcí), na obou vodičích sběrnice bude jeho průběh např. podle obr. 3. Pulsy na obou vodičích se v rozdílovém transformátoru odečtou – v ideálním případě bude výsledkem nulový puls. Rozdílový transformátor na vstupech sběrnicových spojek tedy výrazně zvyšuje odolnost systému proti poruchovým signálům.


Klik pro větší náhled.

Obr. 3: Průběh poruchového signálu na sběrnici KNX/EIB

Teoretický průběh přenášených signálů by měl být pravoúhlý, ovšem vlivem indukčností transformátorů sběrnicových spojek a tlumivky v napájecím zdroji a také parazitních impedancí především sběrnicového vedení dochází k deformaci průběhu pulsů a také k přenosovému zpoždění. Náhradní schema sběrnicového vedení je na obr. 4.


Klik pro větší náhled.
Obr. 4: Zjednodušené náhradní schema vedení sběrnice KNX/EIB

Přenášené pulsy o vrcholové hodnotě napětí 5V jsou superponovány na stejnosměrné napájecí napětí 24V. Účastník, který vysílá telegram, generuje tedy pravoúhlé pulsy na obr. 5 označené jako Uvýst. Během přenosu se vlivem parazitních impedancí vedení postupně deformují – viz průběh Usb. Na vstupu sběrnicové spojky, která přijímá telegram, může být průběh pulsů např. Uvst. Řídicí obvody sběrnicové spojky však zaznamenají puls teprve při dosažení určité úrovně napětí, dané minimálním spínacím napětím Umin. S ohledem na deformaci signálu během přenosu ale nastane časový posun mezi náběžnou hranou výstupního napětí a okamžikem dosažení úrovně spínání vstupního napětí. Takto vzniká přenosové zpoždění τ.


Klik pro větší náhled.
Obr. 5: Deformace signálu při přenosu a vznik přenosového zpoždění

Telegramy používané pro přenos informací po sběrnici KNX/EIB využívají sériového digitálního kódování. Přenosová rychlost je 9,6 kbit.s-1. Znamená to, že pro přenos jednoho bitu je potřebná doba 104µs. V závislosti na obsahu přenášené informace se mění celková délka telegramu. Přenos jednoho telegramu může trvat od přibližně 20ms až do asi 40ms. Nejdelších telegramů se vysílá jen velmi malý počet, takže průměrně dlouhý telegram se přenáší po dobu kolem 25ms. Za 1s tak lze ukončit přenos cca 40 telegramů. Takováto komunikační rychlost není sice zdaleka postačující pro řízení technologických procesů v průmyslu apod., avšak pro řízení funkcí v budovách plně vyhovuje. Proto také jen výjimečně bývá akce požadovaná telegramem vykonána zpožděně, nejvýše o několik stovek ms.
S ohledem na topologické rozdělení systému do jednotlivých linií a oblastí, které jsou odděleny oblastními a liniovými spojkami nepropouštějícími telegramy do jiných linií, do nichž nejsou adresovány, může komunikace probíhat souběžně i v několika liniích. Také proto nedochází k výrazně velkým zpožděním při přenosu telegramů, i když mnohé z nich budou odeslány i čtyřikrát po sobě, jak je zabezpečeno komunikací systémem CSMA/CA (viz předchozí pokračování).

Délka sběrnice v linii, požadavky na napájecí zdroje
Předepsaný sběrnicový kabel o délce 1000m má činný odpor přibližně 72Ω a parazitní kapacitu asi 0,12µF (měřeno při kmitočtu 800Hz). Pro přijatelnou úroveň zkreslení přenášených signálů lze připustit celkovou délku vedení na jedné linii (pro 64 účastníků) nejvýše 1000m. Pokud linie sestává z několika samostatně napájených větví (až pro 256 účastníků), omezení této délky platí pro každou z těchto větví. Zpoždění signálu
τ na celé uvedené délce bude:

τ = 72Ω x 0,12µF = 9µs.km-1

Přitom vzdálenost dvou vzájemně komunikujících přístrojů na téže linii nesmí být větší než 700m. Je to z toho důvodu, aby ze zabránilo přenosovému zpoždění, které by prodlužovalo přenos jednoho bitu na dobu delší než 100µs.
Vezmeme-li v úvahu možné odběry sběrnicových spojek a úbytky napětí na činném odporu sběrnice, největší vzdálenost sběrnicové spojky od napájecího zdroje smí být 350m. Toto platí pro pokles napětí na 21V, při němž je plně zajištěn spolehlivý provoz všech elektronických obvodů napájených po sběrnici.
Pokud bude potřebné použít na jedné větvi linie dva napájecí zdroje, je potřebné zabránit tomu, aby se na tlumivkách napájecích zdrojů nenaindukovaly napěťové špičky o příliš vysokých hodnotách. Zabrání tomu délka vedení sběrnice mezi těmito zdroji, která musí být alespoň 200m.
Samostatně napájená větev linie smí obsahovat nejvýše 64 přístrojů. Tímto počtem jsou míněny pouze ty přístroje, které obsahují sběrnicové spojky, tedy přístroje programovatelné. Do tohoto počtu se nezahrnují veškeré pomocné přístroje, jako sběrnicové svorkovnice, svodiče přepětí, tlumivky, napájecí zdroje. V elektronickém projektu snadno rozlišíme programovatelné přístroje od pomocných. Ty totiž nejsou opatřeny plnohodnotnou fyzickou adresou. Udává se u nich pouze příslušnost k oblasti a k linii, nezapočítávají se do přístrojů na sběrnici. Takže namísto fyzické adresy ponesou všechny pomocné přístroje na téže linii shodné označení. Např. napájecí zdroj a svodič přepětí náležející 2. linii ve 3. oblasti ponesou shodné označení: 3.2.-.
Zdroje pro napájení linií musí vyhovovat řadě podmínek, jejichž splněním napomáhají správnému provozu na sběrnici. Vzhledem k úbytkům napětí na dlouhém vedení sběrnice, v závislosti na odběru jednotlivých sběrnicových spojek, je nezbytné, aby správná činnost těchto spojek byla zaručena v poměrně širokých mezích napájecího napětí (např. od 15V do 31V). Proto není potřebné, aby zdroje byly stabilizované. Jmenovité výstupní napětí zdroje je 29V DC, s tolerancí +/- 2V. Každý zdroj ale musí být vybaven elektronickými ochranami proti přetížením a zkratům. Dojde-li k překročení jmenovitého proudu (640mA pro zdroj pro 64 přístrojů), ochrana odpojí výstup od sběrnice a příslušná dioda LED signalizuje přetížení. Možný vzhled napájecího zdroje je na obr. 6.


Klik pro větší náhled.
Obr. 6: Napájecí zdroj KNX/EIB 640mA

Velmi důležitý je přechodový děj při krátkodobých výpadcích napájení, ke kterým dochází např. při bouřkách. Po přímém úderu blesku do venkovního vedení vn nebo vvn zpravidla následuje zkrat na tomto vedení. Jeho následkem je činnost samočinných ochran, které vynou a zakrátko – nejdéle do asi 200ms - znovu zapnou vedení. Pokud zkrat netrvá (což je po úderu blesku do vedení obvyklé), dodávka energie pokračuje. Tento krátkodobý výpadek musí pokrýt energie nashromážděná ve filtračních kondenzátorech zdrojů – při plném zatížení musí zabezpečit dodávku po dobu alespoň 100ms. Skutečný odběr na sběrnici není trvale na úrovni jmenovitého zatížení, je výrazně nižší, proto z praktického hlediska je množství energie z těchto kondenzátorů plně postačující pro překlenutí uvedeného krátkého výpadku a pro napájení všech sběrnicových spojek. Na činnosti systému KNX/EIB se tedy tyto krátké výpadky neprojeví.

Nejmenší možná systémová instalace KNX/EIB


Klik pro větší náhled.
Obr. 7: Přístroje připojené ke sběrnici KNX/EIB

Již jsme hovořili o tom, že systémová instalace s 15 oblastmi a všemi plně obsazenými liniemi může obsahovat 57600 přístrojů. Jak ale bude vybavena zcela nejmenší systémová instalace? Jedná se o pouhou teorii, protože v praxi by takováto instalace přicházela v úvahu jen ve zcela výjimečném případě (např. jako počátek postupně budovaného programovatelného systému). Jako každá systémová instalace musí být i ta nejmenší vybavena napájecím zdrojem (a samozřejmě i ochranou proti přepětí) a rozhraním RS232 nebo USB, jejímž prostřednictvím budou naprogramovány použité přístroje. Nejmenší instalace bude určena pro ovládání jedné funkce, např. pro spínání jednoho svítidla. V tomto případě musí obsahovat alespoň jeden tlačítkový snímač (ve schematickém náčrtu zapojení podle obr. 7 bude ve značce snímače písmeno n uvádějící násobnost prvku nahrazeno číslovkou 1) a jednonásobný spínací akční člen. Tlačítkový snímač bude opatřen sběrnicovou spojkou pro montáž do zapuštěné elektroinstalační krabice, zatímco spínací akční člen bude pro vestavnou montáž např. do svítidla – viz obr. 8.


Větší náhled získáte poklepáním do obrázku.
Obr. 8: Sběrnicová spojka, jednonásobný tlačítkový snímač a vestavný spínací akční člen

Namísto dvou samostatně programovatelných přístrojů lze použít jeden přístroj kombinovaný – zapuštěnou sběrnicovou spojku tvořící konstrukční celek s jednonásobným spínacím akčním členem podle obr. 9. Pro ruční ovládání může být použit tentýž jednonásobný tlačítkový snímač, jaký je na obr. 9. Tento kombinovaný přístroj je opatřen bezšroubovou svorkovnicí pro připojení sběrnice KNX/EIB a desetipólovým konektorem – aplikačním rozhraním – pro připojení aplikačního modulu (v toto případě jednonásobného tlačítkového snímače), stejně jako sběrnicová spojka. Navíc obsahuje i řídicí elektronické obvody a spínací relé se svorkami pro připojení zátěže. Namísto dvou přístrojů připojených ke sběrnici tak lze vytvořit tuto jedinou funkci jedním přístrojem – s jediným připojením ke sběrnici.


Klik pro větší náhled.

Obr. 9: Kombinace sběrnicové spojky a tlačítkového snímače

V obou naznačených případech bude možné naprogramovat spínání svítidla jednou z následujících možností:

  • stiskem jedné strany tlačítkového snímače se zapíná, na opačné straně se vypíná,
  • stiskem libovolné strany snímače se zapíná, následujícím stiskem vypíná,
  • svítidlo se pouze zapíná, samočinně vypíná po nastaveném časovém zpoždění,
  • svítidlo svítí (nesvítí) jen po dobu stisku tlačítkového snímače.

Dvoubarevná dioda LED na tlačítkovém snímači může být nastavena jako signální (jednou barvou svítí v zapnutém stavu ovládaného spotřebiče, druhou barvou ve vypnutém stavu) nebo jako orientační (trvale svítí jednou barvou).
V každé systémové instalaci KNX/EIB je nutné použití odpovídajícího počtu napájecích zdrojů (zpravidla jeden zdroj pro linii nebo větev linie s až 64 aktivními prvky). Postačí však jedno komunikační rozhraní RS232 nebo USB pro celou instalaci.

 
 

 

TEXT Z OBLASTÍ SOUVISEJÍCÍ KONTAKT
ABB s.r.o., Elektro-Praga Jablonec
Zaslání vizitky
Zobrazit záznam v adresáři


FIREMNÍ TIPY
Úvodní, stručná verze rozhovoru s Jiřím Konečným zmiňuje, jak různé technologické trendy a požadavky na funkčnost a adaptabilitu ovlivňující vývoj systémů chytrých domů ve světě. Jak se český trh snaží v této oblasti držet krok s německými trendy. Diskutuje o vlivu levných produktů na trhu a jak se výrobci musí vyrovnávat s očekáváními spotřebitelů po vyšší kvalitě a více funkcích. Jak velké technologické firmy jako Google, Amazon nebo Apple formují trh s chytrými domy vytvářením komplexních ekosystémů. Předpovídá, že budoucnost bude směřovat k ještě větší integraci a inovacím v oblasti chytrých domovů, které budou přístupné širšímu spektru spotřebitelů. Více zde ...
Digitalizace nás kromě jiných služeb zasypává také daty. Máme tolik dat, že se v nich často nemůžeme vyznat. O tom, co nám dnes poskytuje digitalizovaná knihovna, hovořím s Petrem Žabičkou z Moravské zemské knihovny. Žijeme v době, kdy nové publikace nevznikají, nejsou žádní autoři odborných článků. Jsme zasypávání krátkými reklamními úryvky a zdroje ke studiu nám zůstávají skryty pod tlustou vrstvou marketingových cílů. Co s tím?
Rakouská pobočka OBO BETTERMANN začíná stavět další objekt! S heslem "Růst potřebuje prostor" startuje výstavba nového kancelářského, logistického a školicího centra v Gramatneusiedlu. Tam vzniká budoucí zázemí OBO Austria. Do konce roku bude nová budova OBO přístřeším pro zhruba třicet pracovníků značky. Do budoucna značka OBO zpevní svou dosavadní síť. A jaké je ohlédnutí za českou pobočkou? V květnu 2019 společnost OBO BETTERMANN oslavila na pražském ...
... české zastoupení firmy DEHN + SÖHNE každé dva roky vždy k příležitosti veletrhu Amper vydává zkrácený český katalog svých výrobků. Opravdovou lahůdkou je druhá kapitola tentokrát žlutá, tedy Yelow/Line ...
DALŠÍ FIREMNÍ ODKAZY
Definice průmyslových svítidel. Průmyslové svítidlo je speciálně navržené a vyrobené pro použití v průmyslových prostředích, kde může být vystaveno náročnějším podmínkám, jako jsou vyšší nebo nižší teploty, vlhkost, prach, chemikálie, mechanické nárazy a vibrace. Je konstruováno tak, aby odolávalo těmto extrémním podmínkám, a často splňuje specifické bezpečnostní a výkonové normy relevantní pro daný ...
Repríza KNX výroční konference k 30. výročí KNX ve světě. Událostí prováděl Josef Kunc s Vítem Pivoňkou. Z programu této události očekávejte významné novinky pro všechny partnery KNX, jejich hodnocení a doporučování potencionálním zákazníkům, poznatky z vynikajícího projektu KNX systémové instalace, chyby v projektech a při jejich realizaci a předcházení jim, představení všech ...
Hlavním důvodem vývoje nového typu krabice byl zájem zákazníků o zásuvku pro instalaci na omítku, ale bez krycího víčka. To v některých prostorách není z hlediska požadavků na ochranu před vniknutím cizích předmětů a vody nutné ...
Videospot názorně ukazuje použití můstkových systémů pro propojení řadových svorek. K použití není potřeba speciálních nástrojů, přes to je připravena praktická pomůcka. Řešení, které umožňuje přehledné spojení sousedících i vzdálenějších svorek včetně rozdílných průřezů ...
Terminolog
Týdenní přehled
Přihlašte si pravidelné zasílání týdenního přehledu
Vyhledávání
Hledaný text zadávejte prosím s diakritikou



Panacek
reklama
Tiráž

Neomezený náklad pro česky a slovensky hovořící elektrotechnickou inteligenci.

ISSN 1212-9933